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While rodent cancer models are essential for early proof-of-concept and mechanistic

studies for immune therapies, these models have limitations with regards to predicting

the ultimate effectiveness of new immunotherapies in humans. As a unique spontaneous,

large animal model of cancer, the value of conducting studies in pet dogs with cancer

has been increasingly recognized by the research community. This review will therefore

summarize key aspects of the dog cancer immunotherapy model and the role that

these studies may play in the overall immunotherapy drug research effort. We will focus

on cancer types and settings in which the dog model is most likely to impact clinical

immuno-oncology research and drug development. Immunological reagent availability is

discussed, along with some unique opportunities and challenges associated with the

dog immunotherapy model. Overall it is hoped that this review will increase awareness

of the dog cancer immunotherapy model and stimulate additional collaborative studies

to benefit both man and man’s best friend.
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INTRODUCTION

Cancer immunotherapy continues to make remarkable strides in just the few years since the
first checkpoint molecule targeted therapeutic antibodies were evaluated in trials and approved
by the FDA. Indeed, there is the sense by the author and colleagues in the veterinary immune-
oncology community (Personal Communication, 2019) that the field of human immune-oncology
is advancing so rapidly that new immunotherapy combinations are being evaluated before there
is time to determine whether the combinations are truly effective, as judged by evidence of
synergistic or additive antitumor activity in realistic animal models (1, 2). Thus, there is a need
for additional animal models with which to evaluate new cancer immunotherapies, particularly
novel immunotherapy combinations, including immunotherapy combined with targeted therapies,
chemotherapy, and radiation therapy. Current rodent cancer models have certain limitations with
regards to predicting the ultimate effectiveness of new immunotherapies in humans (3–5).

Increasingly the NIH and pharmaceutical and biotechnology companies are looking to
alternative animal models with which to screen immunotherapeutic drugs. The dog spontaneous
cancer model has received considerable attention recently (4, 6–13). Several factors drive interest
in the dog model. For example, dogs spontaneously develop cancer that resembles human
malignancies in many important respects, including phenotype, biological behavioral, histology,
mutational signatures and signaling pathways, and immune responses. Indeed, the value of the dog
cancer model was recently recognized by the National Institute of Medicine (9).

Therefore, this review will summarize key aspects of the dog cancer model that make it
particularly well-suited to evaluating cancer immunotherapies and drug combinations. This will
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not however be a comprehensive review of all dog cancer
immunotherapy studies, which have been reviewed elsewhere
and are beyond the scope of this work (3, 14–20). We will instead
focus on areas of investigation in which the dog model currently
may be most likely to impact clinical immuno-oncology research
and new drug development. Reagent availability is also discussed,
along with some challenges faced by the dog immunotherapy
model along with strategies to overcome these challenges. The
intent of this review is to increase awareness of the dog cancer
model and stimulate additional studies, which in many cases may
benefit both man and man’s best friend.

THE CANINE CANCER MODEL AND
RELEVANCE TO IMMUNOLOGICAL
STUDIES

The uniquely valuable aspects of the canine cancer model
have been well-covered in recent reviews (6, 7, 13). With
regards to immunological studies in general, there are several
key differences between dogs and rodents. For one, dogs are
considered an immunologically outbred species, though there
are genetic bottlenecks (i.e., limited genotypic or phenotypic
diversity within breeds due to extensive inbreeding) for certain
breeds of dogs (13). In fact, the availability of dog breeds can
in some cases make it possible to map genetic loci to certain
immunological traits, as in the example of susceptibility to
lymphoma in dogs (21). For example, it was reported that usage
of certain VH genes has been associated with improved survival
times in canine B cell lymphoma, a dog model for human non-
Hodgkin lymphoma (22). Other cancer traits have also been
mapped to specific genetic loci in dogs by taking advantage of
dog breed genetics (23–26).

Another relevant aspect of the dog model is that the immune
system of dogs in cancer immunotherapy studies is typically
already very immunologically experienced, with animals having
experienced exposure to multiple immunizations during their
early years, and to multiple different viral and bacterial infections
prior to development of cancer. These immunological events all
shape the immune repertoire of dogs and consequently render
the dog much more immunologically experienced than rodents
raised in sterile cages and fed sterilized water and chow. Dogs
also share the same environment of their human companions,
and are therefore exposed to many of the same allergens, food
antigens, and environmental chemicals (6, 8). Thus, it is not
surprising that dogs may react to an immunotherapeutic drug in
a different manner than rodents, and behave in many ways more
analogously to humans.

Dogs also develop tumors spontaneously, which means that
the immune system has typically had weeks to months to
recognize the tumor and mount immune responses prior to the
appearance of a tumor large enough to diagnose. This long-
term exposure to tumor antigens and secreted factors thus
educates and conditions the canine immune system in a way that
cannot be recapitulated in rodent implanted or induced tumor
models (3, 5, 27). Moreover, the canine immune system is much

more broadly “educated” which will shape the development of
antitumor immunity.

From the standpoint of dosing immunotherapy drugs (other
than vaccines), dogs with their similar body sizes and metabolic
pathways also fill a gap not currently addressed by rodent
studies. Drugs dosed based on weight or body surface area
in dogs are much more likely to predict drug activity and
toxicity than drugs dosed in mice frequently treated at much
higher drug concentrations than can be tolerated by human
patients (8). This feature of studies in dogs would be particularly
relevant for dosing small molecule drugs and biologics such as
monoclonal antibodies, where volume of distribution is critical
for determining activity and toxicity (6, 8, 10, 13). The larger
size of dogs and their tumors also makes repeated access to
blood and tumor tissue biopsies a possibility, which is often
important in immunological studies to assess the progression of
immune responses, as for example changes in immune infiltrates
in tumor tissues.

COMPARISON OF DOG AND HUMAN
IMMUNE CELLS AND IMMUNE
RESPONSES

The canine immune system and immune responses in general
are very similar to those of humans, with a few notable
differences. In broad terms, numbers and proportions of T cells
(CD4 and CD8) and B cells in blood of adult dogs closely
resemble those of humans (Schalm’s Veterinary Hematology,
7th edition and Clinical Immunology of the Dog and Cat, 2nd
edition). Moreover, the ratio of CD4 to CD8T cells (∼2:1)
in blood and lymph nodes is similar in dogs and humans.
Numbers and percentages of neutrophils and monocytes in
blood of both species are also very similar. However, recent
reagent development for canine NK cells may improve our
ability to quantitate dog NK cell responses (28, 29). Dogs also
have circulating gamma-delta T cells, though little is known
regarding how their numbers may change in disease states
(30). Regulatory T cells (CD4+FoxP3+) in dogs have also been
defined, and their numbers shown to be significantly increased
in dogs with cancer, in both blood and tumor-draining lymph
nodes (31–33).

Circulating concentrations of immunoglobulins in adult
dogs are approximately the same as those of adult humans,
though much less is known about normal immunoglobulin
concentrations in young dogs and when final adult IgG
concentrations are attained (Schalm’s Veterinary Hematology,
7th edition and Clinical Immunology of the Dog and Cat,
2nd edition). Canine IgG molecules can be classified into four
functional subclasses (A–D), similar to the human IgG subclasses,
with two subclasses capable of binding Fc receptors and two
subclasses being Fc functionally negative (34).

T cells in dogs express many of the same co-stimulatory or
co-inhibitory molecules as present in humans, including CD28,
PD-1, OX40, TIGIT, TIM-3, and Lag3. Like human T cells,
canine T cells constitutively express low levels of MHCII, which
can be upregulated following T cell activation. In addition,
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canine effector T cells upregulate production of granzyme B,
in addition to CD25 and MHCII (35). Antigen presenting cell
(B cells, DC, and monocyte and macrophages) in dogs also
share many co-stimulatory or inhibitory molecules with human
APC, including MHCII, CD40, CD80, CD86, PD-L1 expression
(36–40). In addition, responses to activation, as for example
with TLR ligands, is also similar, with upregulated expression of
co-stimulatory molecules, and production of pro-inflammatory
cytokines such TNF-a, IL-1b, and IL-6, and anti-inflammatory
cytokines including IL-10 and TGF-b. In addition, canine
monocytes express the chemokine receptor CCR2 and migrate
in response to an MCP-1 gradient (41).

An unusual feature of dog neutrophils, which differs from

neutrophils in humans, is their expression of CD4 (Schalm’s

Veterinary Hematology, 7th edition and Clinical Immunology of

the Dog and Cat, 2nd edition). The function of CD4 molecule
expression by canine neutrophils is unclear, and CD4 is not

expressed by other myeloid lineage cells such as monocytes in

dogs. Dogs also appear to have a greater abundance of mast

cells than humans, especially in mucosal sites such as the skin
and airways, and mast cell tumors are much more common in

dogs than in humans. Dogs also develop malignancies of cells of

the DC and macrophage lineage (e.g., malignant histiosarcoma)

at a much higher rate than in humans (e.g., Langerhans

histiocytosis) (42–44).

SELECTED CANINE CANCER
IMMUNOTHERAPY STUDIES WITH HIGH
RELEVANCE TO HUMAN
IMMUNO-ONCOLOGY

Dogs will never replace rodent cancer models for cancer
immunotherapy drug research and development, since early drug
screening and mechanism of action studies can realistically only
be done in rodent models. However, there are several tumor
models where the dog may offer clear advantages, particularly
for assessment of new immunotherapies and their potential
efficacy against metastatic disease (3, 9, 45). For example, the
dog model may be uniquely valuable to address the following
issues with respect to cancer immunotherapy: Can new cancer
vaccines control advancedmetastatic disease?; Can adoptive CAR
T cell or NK cell therapy be both safe and active against solid
tumors, and what is the safety profile?; How well do tumor
microenvironment modifying agents work when combined with
existing immunotherapies such as targeted drugs or checkpoint
molecule antibodies?; Can checkpoint targeted therapeutics be
effectively combined with other cancer treatmentmodalities (e.g.,
radiation therapy, cytotoxic chemotherapy) to control or prevent
tumor metastases? These examples are discussed in greater detail
below. A summary of key recent dog immunotherapy studies is
provided in Table 1.

TABLE 1 | Summary of relevant canine cancer immunotherapy trials and results.

Trial Delivery Tumor type Number

enrolled

Study primary

endpoints

Secondary

endpoints

Outcomes References

Her2 neu

vaccine

Listeria vectored

(IV)

Osteosarcoma 18 Time to metastasis T cell responses Increase OST vs.

historical control

(46)

TERT vaccine AAV vectored (IM) B cell

lymphoma

14 Time to progression,

OST

TERT antibodies Increase OST vs.

historical control

(47)

Vaccine plus

surgery

Autologous tumor

lysate (SC)

Meningioma 11 Tumor progression Antibody response No tumor progression

over 6 months

(48)

CD20 CAR T Transduced

autologous T cells

B cell

lymphoma

1 Safety Tumor regression Safely tolerated, partial

tumor response

(49)

NK cell ACT Intratumoral

administration

Osteosarcoma 10 Safety, tumor

regression

Tumor infiltrates Improved DFI, NK

localization

(50)

Liposomal

clodronate

IV, repeat infusions Soft tissue

sarcoma

13 Safety, macrophage

depletion

Tumor regression Macrophage depletion,

no tumor responses

(51)

CCR4 blockade Antagonist

antibody (IV)

Bladder

cancer

26 Treg infiltrates Survival, toxicity Improved OST, Treg

depletion

(52)

IDO inhibitor

wth XRT

Oral Melanoma,

soft tissue

sarcom

5 Safety, tumor response Reduction in Tregs Partial tumor response,

immune response

(53)

Allogeneic

tumor vaccine

Tumor lysate with

adjuvant (SC)

Hemangiosarcoma 28 OST, tumor progression Antibody response Increase survival vs.

historical control

(54)

Bacterial

immunotherapy

Attenuated

Salmonella (IV)

Multiple

tumor types

41 Tumor regression Bacterial

localization

15% overall response

rate; dose dependent

toxicity

(55)

Local

superantigen

immunotherapy

Plasmid DNA,

intratumoral

Melanoma 26 Tumor regression, OST Immune infiltrates Increased survival vs.

historical control; CTL

activity

(56)

Liposomal MTP IV, repeat infusions Osteosarcoma 98 DFI and OST Macrophage

activation

DFI and OST

significantly increased

(57)
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Cancer Vaccines
A key question related to the new generation of cancer
vaccines currently under development, which is difficult to
fully address in rodent models, is whether they can effectively
prevent metastatic disease, or control metastases once they
develop. As noted above, dogs develop several highly metastatic
cancers closely related to human cancers, including in particular
osteosarcoma and melanoma (6, 20, 57). These cancers in
dogs therefore offer an opportunity to test new cancer vaccine
approaches in immunologically realistic settings. As an example,
studies are currently underway in dogs with osteosarcoma
to determine whether a newly conditionally approved canine
osteosarcoma Listeria-vectored vaccine targeting HER2/neu can
effectively prevent tumor metastases, and control the growth of
macroscopic metastases (46). This novel vaccine approach has
demonstrated remarkable early evidence of activity as adjuvant
therapy for dogs with osteosarcoma at high risk for tumor
metastases. Another example is a plasmid-DNA based tumor
vaccine targeting the TERT antigen, which has been evaluated in
dogs with lymphoma in combination with CHOP chemotherapy
(47, 58). The vaccine has also demonstrated impressive antitumor
activity, as reflected in prolonged disease-free intervals compared
to relevant chemotherapy only control animals. A number of
other cancer vaccine targets are currently being evaluated in
canine immunotherapy studies, including the GD3 antigen in
canine melanoma studies (59).

Adoptive Cellular Therapy
Adoptive cell therapy (ACT) with CAR T cells has transformed
the treatment of certain leukemias and several other
hematopoietic cancers in humans. However, progress in
using CAR T cells to treat solid tumors in humans has been more
fraught with difficulty, including serious and occasionally fatal
toxicities, as well as less overall anti-tumor activity. The adverse
events associated with CAR T cell treatment of solid tumors were
unfortunately not predicted by rodent cancer models. Given
the strong similarities between canine and human immune

responses, dogs with solid tumors offer a unique opportunity
to evaluate the safety and potential efficacy of new ACTs such
as CAR T cell therapy before initiating human clinical trials.
Indeed, ACT with CAR T cells has been evaluated in small
scale studies in dogs, including CAR T cell studies with a CD20
targeted CAR T cells in dogs with B cell lymphoma (49). Other
opportunities for use of the dog tumor model include evaluation
of ACT with CAR T or CAR NK cells specific for other widely
expressed tumor antigens in dogs, including HER2/neu, EGFR,
and GD2 (60). For example, ACT using activated canine NK cells
has shown early promise in conjunction with radiation therapy
in a dog osteosarcoma model (50).

Tumor Microenvironment Modification
Increasingly studies point to the essential role of the tumor
microenvironment (TME) in regulating overall anti-tumor
immune responses. Thus, a new wave of therapeutics that target
the TME are under development and evaluation in clinical trials.
Our studies have identified a wide spectrum of immune responses
in tumor tissues of dogs, ranging from highly inflammatory
tumors (e.g., melanoma) to tumors that are immunologically
“cold” (e.g., soft tissue sarcoma, mast cell tumors, osteosarcoma)
(Regan D; Flint Animal Cancer Center, unpublished data). Each
of these tumor models in dogs therefore offers the opportunity
for evaluation of agents that target the TME, particularly for
those designed to remove immune suppressive cells to help
activate immunologically “cold” tumors. For example, depleting
target tumor-associatedmacrophages by administration of agents
such as liposomal clodronate that deplete tumor macrophages
outright has been evaluated in dogs (51, 61). We also found that
modifying the TME by direct tumor transfection with a potent
T cell activating molecule such as a bacterial superantigen could
stimulate T cell infiltration and activation and significant tumor
regression in dogs with melanoma [Figure 1; (56)].

A second strategy to eliminate the immune suppressive tumor
macrophage population is to prevent their recruitment to tumor
tissues by administering agents that block signaling by the

FIGURE 1 | Tumor response to TME modification with a T cell activator. A dog with oral malignant melanoma (left panel) was treated with a series of every 2 week

intratumoral injections of plasmid DNA encoding a bacterial superantigen gene (SEB), along with an IL-2 encoding plasmid. Tumor depigmentation was evident after

the first injection (middle image) and complete tumor regression was noted after the second intratumoral injection (right panel).
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chemokine receptor CCR2. Given that there are no currently
approved (or affordable) pure CCR2 antagonists available for
evaluation in dogs, our group has identified several drugs, most
notably angiotensin receptor antagonists (ARBs), that can be
repurposed as monocyte migration inhibitors. For example, we
reported recently that the ARB losartan exerts potent antitumor
activity by blocking signaling via the CCR2 chemokine receptor,
thereby inhibiting the recruitment of inflammatory monocytes
into tumor tissues, leading to overall tumor macrophage
depletion (62). A recently completed clinical trial in dogs
with metastatic osteosarcoma treated with high-dose losartan
immunotherapy demonstrated significant antitumor activity and
systemic suppression of monocyte migration (Regan et al.,
in review).

As another strategy to modify the TME, it was recently
reported that blockade of CCR4 signaling with humanized
antibodies could significantly deplete Tregs in a canine model
of invasive bladder cancer (52). In that study, treatment with an
anti-CCR4 antibody depleted Tregs in bladder tumor tissues in
dogs, and was associated with sustained tumor regression, and
prolonged survival.

Other groups have investigated indoleamine deoxygenase
inhibitors, which target an immune suppressive metabolic
pathway in the TME (53, 63). The hypoxic TME in brain cancer
can also be modified by administering agents that increase
tumor oxygenation in dogs, in conjunction with radiation (64).
Thus, the dog cancer model offers multiple opportunities to
evaluate TME modulating drugs, particularly because many of
these studies have relatively simple PD endpoints and may be
of relatively short duration if the primary study endpoints are
changes in the TME rather than tumor responses per se.

Checkpoint Molecule Targeted
Immunotherapies
Checkpoint targeted therapeutics are far advanced in
development and approval for treatment of multiple cancers in
humans. As new checkpoint molecule targeted drugs become
available in dogs, opportunities exist where the dog model may
provide important new information, particularly with respect
rational combination therapies of immune targeted drugs given
with checkpoint inhibitors. A fully canine PD-1 antibody is
currently nearing phase I trial completion in dogs with a variety
of different cancers and a product launch is possible in 2020
(40). Other canine checkpoint targeted antibodies are also in the
pipeline, including PD-L1 and OX40 antibodies. In addition,
several small molecule inhibitors of checkpoint molecules are
being investigated in clinical tumor vaccine trials in dogs with
brain cancer (64–66).

Thus, the anticipated availability of new checkpoint
immunotherapy reagents will make it possible to conduct
creative trials in dogs. For example, a number of questions
could be addressed, including: Are checkpoint molecule
therapeutics effective when administered in an adjuvant setting
in dogs with highly metastatic disease such as osteosarcoma or
hemangiosarcoma? Or can checkpoint inhibitors be effectively
combined with cytotoxic drugs such as CHOP for treatment of

TABLE 2 | Immunological reagents for cell identification and functional

assessment in dogs with cancer.

Molecule Cellular expression Usage

CD3 T cells FC, IHC

CD5 T cells FC

CD4 Th subset, neutrophils FC, IHC

CD8 Tc subset FC, IHC

CD9 Myeloid cells, T cells FC

CD11a Leukocytes, memory T cells FC

CD11b Myeloid cells FC, IHC

CD11c DC, some macrophages FC, IHC

CD14 Monocytes, some neutrophils FC

CD18 Myeloid cells, MH FC, IHC

CD19, CD20, CD21 B cells, lymphoma FC

CD25 Activated T cells, Tregs FC

CD31 Endothelial cells IHC

CD34 Hematopoietic stem cells FC

CD40 APC FC

CD45 All hematopoietic cells FC

CD61 Platelets FC

CD79a Pre-B cell IHC

CD86 APC FC

MHCII T cells, APC FC, IHC

FoxP3 Regulatory T cells FC, IHC

Granzyme B T cells FC, IHC

TNF-a T cells, APC FC, IHC

IFN-g T cells, NK cells FC, IHC

EOMES T cell (exhausted; memory) FC

Tim-3 T cell (exhausted) FC

PD-1 T cell (exhausted); also recently activated FC

PD-L1 Monocyte, macrophage, DC FC, IHC

Ki67 Proliferating cells FC, IHC

lymphoma? Or does co-administration of a checkpoint inhibitor
with a tumor vaccine such as the Her2/neu vaccine improve
vaccine efficacy in the setting of advanced, bulky tumors? As
these examples suggest, a number of important questions related
to adjuvant therapy and checkpoint therapy combinations
can be addressed in targeted populations of dogs with
relevant cancers.

Other Immunotherapy Approaches
Additional promising cancer immunotherapy strategies are also
under evaluation in the dog cancer model. These include
the use of viral vectored cytokine delivery approaches (brain
cancer), systemic administration of IL-12 nanoparticles (soft
tissue sarcoma), bacterial delivered therapeutics (e.g., engineered
hypoxia targeting Salmonella in soft tissue sarcoma), regulatory T
cell depletion with metronomically delivered chemotherapeutics
(e.g., toceranib), adoptive transfer of non-specifically activated
T cells and IL-15 activated NK cells (osteosarcoma), along
with a variety of different cancer vaccines (50, 55, 67).
Thus, the canine oncology field has widely embraced the
potential for immunotherapy, and it is likely this trend will
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TABLE 3 | Cytokine reagents for dogs.

Cytokine Expression Format

IL-1b Monocyte, macrophage ELISA, multiplex

IL-2 T cells, NK cells, B cells ELISA, multiplex

IL-4 Th2 T cells ELISA

IL-6 Macrophage, T cells ELISA, multiplex

IL-7 Multiple multiplex

IL-8 Multiple ELISA, multiplex

IL-10 APC, T cells ELISA

IL-12 APC ELISA

IL-15 Monocytes, others multiplex

IL-18 APC multiplex

MCP-1 Multiple ELISA, multiplex

TNF-a APC, T cells ELISA, multiplex

GM-CSF Multiple multiplex

IFN-g T cell, NK cell ELISA, multiplex

continue in the future. Data from rigorously conducted trials
of immunotherapy in dogs, paired with immune biomarker
correlates (9) will help increase the impact of these studies on the
human immuno-oncology.

Challenges for Immunotherapy Studies in
Dogs
While there is great promise for studies in dogs with cancer
to contribute to the advancement of immunotherapy for
both dogs and humans, there are still challenges inherent
to the dog immunotherapy model that must be addressed.
Among these challenges is a perceived lack of necessary
immunological reagents. Though this issue is often cited
as a major impediment to immunotherapy studies in dogs,
the reality is different (see Tables 2 and 3). For example,
there are currently more than sufficient reagents available for
evaluating immune responses to cancer, including T and B
cell responses (activation, exhaustion, proliferation), monocyte
and macrophage responses (numbers, functional phenotype),
regulatory T cells (numbers), neutrophils (numbers, function),
andNK cells (numbers, function) (Table 2). In addition, there are
now a large variety of cytokine reagents for dog studies, including
cytokine ELISAs, cytokine multiplexing kits, and antibodies for
intracellular cytokine staining and analysis by flow cytometry
(Table 3). It is also possible to assess immune responses in
archived tissues and cells, using qRT-PCR and Nanostring
technology, as well as next generation sequencing technologies
(e.g., RNA sequencing).

Another important challenge of the dog model is related to
the costs associated with upscaling drugs and immunological
reagents for conducting pre-clinical studies in dogs, given their
larger body size vs. mice. Moreover, there are substantial costs
in terms of personnel (veterinarians, technicians, laboratory
personnel) required to support such studies. However, all of
these challenges are surmountable, given sufficient support from
funding agencies, includingmore recently theNIH. The setting of
realistic expectations at the outset of studies also helps minimize
the impacts of these challenges.

Summary and Conclusions
The era of effective cancer immunotherapy represents a
major change in how cancer is treated, and the dog cancer
model undoubtedly has an opportunity to play an important
role in advancing this field. The value of the dog cancer
model for immunotherapy has been demonstrated previously,
with the best example being the essential role played by
dogs with osteosarcoma development of the non-specific
immunotherapeutic L-MTP (liposomal muramyl tripeptide) as
an approved immunotherapy for pediatric osteosarcoma (57, 68).
The key to leveraging the dog model to advance such studies
will be to identify questions that cannot be answered currently
in rodent models, and to move nimbly to propose studies that
can be informative within a short time frame (months), since
the immunotherapy field moves so rapidly. Procuring adequate
drug supplies and reagents for large animal studies is also
essential. Finally, broad collaborations will always advance the
field more effectively than single institution studies, particularly
in situations where essential reagents must be shared or where
access to patients with certain tumor types is limited. The best
possible outcomes will be studies where the results can be
translated promptly to benefit both dogs and humans, with their
shared tumor types and strong bonds.
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